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Abstract - This study presents a predictive framework for 
estimating peak shear strength and the corresponding shear 
displacement in direct shear tests, with a particular focus on 
applications to multistage testing. A normalized hyperbolic 
function, originally developed for triaxial tests, is adapted to 
represent the shear stress–displacement curve up to failure. 
Based on a dataset of 484 direct shear tests performed on 175 
different soils, the parameters of the model were derived 
through regression and empirically linked to the normalized 
secant elastic modulus. In multistage direct shear tests, early 
termination of the initial shearing phases often prevents the 
direct measurement of peak values. To address this, a prediction 
algorithm was developed that estimates the unknown peak 
shear strength and displacement based on the initial portion of 
the shear curve. This algorithm combines empirical 
relationships with a stochastic search method based on 
differential evolution to minimize the prediction error. The 
model was validated across the full dataset, and simulations 
showed that peak values could be predicted with high accuracy 
even when only 60% of the displacement at failure was used as 
input. The results highlight the potential of this approach to 
improve the reliability and efficiency of multistage shear testing 
in fine-grained, coarse-grained, and mixed soils. 
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1. Introduction 

Multistage direct shear testing provides an 
efficient alternative to traditional singlestage tests for 
evaluating the shear strength of soils. This is particularly 

relevant for coarse-grained or mixed-grained soils, 
where the material demand and equipment 
requirements for large-scale testing can be substantial. 
In comparison to the conventional approach, which 
typically requires three independent tests on identical 
specimens, the multistage method reduces testing time 
and resource consumption [1]-[6]. However, accurate 
application of the multistage procedure requires careful 
control of each shear phase, especially in dense soils. 
Excessive mobilization during the early stages can lead 
to structural degradation within the shear zone, affecting 
the validity of the final results. Several studies have 
shown that terminating the first and second shear 
phases before reaching the peak strength is crucial to 
preserving key strength components such as structure, 
bonding, and dilatancy [1]-[6]. These components, only 
present in the initial stages, may not be recovered once 
disturbed, leading to underestimation of peak shear 
strength in subsequent stages [15]. Despite its 
advantages, the multistage test is often avoided due to 
the uncertainty in interpreting partially mobilized 
curves. To address this issue, the ability to estimate the 
peak shear strength before failure becomes essential. 
Predicting the shear behavior from incomplete curves 
allows for the design of more effective multistage testing 
procedures. This approach minimizes sample 
disturbance while maintaining the accuracy of shear 
strength estimation. 

This study introduces a model that enables the 
prediction of peak shear strength and the corresponding 
shear displacement based on partially mobilized data 
from direct shear tests. The model is adapted from 
Kondner’s (1963) [7] hyperbolic function, traditionally 
applied to triaxial tests, and is fitted through 
normalization and regression techniques. The model is 
validated using a comprehensive dataset of 484 direct 
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shear tests, performed on coarse-, fine-, and mixed-
grained soils. The resulting framework provides a 
method to estimate peak values when early termination 
occurs, improving the interpretation of incomplete shear 
curves. 

 

2. Background and Theoretical Model 
The behavior of soils under shear loading can be 

effectively described using nonlinear stress–strain 
relationships. One of the most widely recognized 
formulations in this context is the hyperbolic function 
introduced by Kondner (1963) [7] to approximate the 
stress–strain curves of soils in drained triaxial tests. 
Duncan and Chang (1970) [8] later incorporated this 
concept into an elastoplastic constitutive model, which 
has since served as a foundation for various soil models, 
including the widely used Hardening Soil model.  

In its original form, the hyperbolic model 
expresses the mobilization of deviator stress (q) as a 
function of axial strain (ε), governed by two key 
parameters, a and b, where a represents the inverse of 
the initial tangent modulus (𝐸𝑖) at the beginning of the 
shearing phase, and b defines the asymptotic stress level. 
The basic hyperbolic formulation is expressed as: 

 

𝑞 =  𝜎1 − 𝜎3 =
𝜀

𝑎 + 𝑏 ∙ 𝜀
 (1) 

 
Where 𝑞 is the deviator stress, 𝜎1 and 𝜎3 are the 

principal stresses, 𝜀 represents the axial strain, and a and 
b are constants derived from regression analysis of 
experimental data.  

As axial strain increases, the deviator stress 
approaches an asymptotic limit 𝑞𝑎, defined by: 

 

𝑞𝑎 =  (𝜎1 − 𝜎3)𝑎 = 𝑙𝑖𝑚
𝜀→∞

(𝜎1 − 𝜎3) =
1

𝑏
 (2) 

 
Where 𝑞𝑎 is the asymptotic deviator stress, 𝜎1 and 

𝜎3 are the principal stresses, and 𝑏 is a constant as 
previously defined. 

The asymptotic deviator stress (𝑞𝑎) is related to 
the failure deviator stress (𝑞𝑓) through the failure ratio 

𝑅𝑓 . A typical value for 𝑅𝑓 is 0.9, but for most soils, it falls 

between 0.75 and 1.0 [10]. The relationship is expressed 
as: 

 

𝑞𝑎 =  
𝑞𝑓

𝑅𝑓
=

(𝜎1 − 𝜎3)𝑎

𝑅𝑓
 (3) 

 
Where 𝑞𝑓 and (𝜎1 − 𝜎3)𝑓 represent the failure 

deviator stress, and 𝑅𝑓 is the failure ratio, which is less 

than or equal to 1.0. 
By substituting the constant a in Eq. 1 with the 

inverse of the initial elastic modulus (𝐸𝑖) and replacing b 
using the expressions from Eqs. 2 and 3, the following 
expression is obtained: 

 

𝑞 =  𝜎1 − 𝜎3 =
𝜀

1

𝐸𝑖
+

𝜀
(𝜎1−𝜎3)𝑓

𝑅𝑓

 
(4) 

 
Where 𝑞 is the deviator stress, 𝜎1 and 𝜎3 are the 

principal stresses, 𝜀 represents the axial strain, 𝐸𝑖  
represents the initial elastic modulus, (𝜎1 − 𝜎3)𝑓 is the 

failure deviator stress, and 𝑅𝑓 is the failure ratio. 

This form enables the estimation of the stress–
strain curve based on known material stiffness and 
failure parameters. The hyperbolic model's flexibility 
and simplicity have led to its widespread use for 
approximating stress paths up to failure in triaxial 
testing. 

This formulation serves as the foundation for 
developing a predictive model applicable to direct shear 
tests. 

 

3. Model Adaptation for Direct Shear Tests 
Although the hyperbolic formulation was 

originally developed for triaxial conditions, its structure 
allows it to be adapted to other test configurations. In 
direct shear testing, the deviator stress (𝑞) is replaced by 
a normalized shear stress (𝜏𝑛𝑜𝑟𝑚), and the axial strain 
(𝜀) by a normalized horizontal shear displacement 

(𝑠ℎ,𝑛𝑜𝑟𝑚). These normalized variables are obtained by 

dividing the shear stress and displacement values by the 
peak shear stress (𝜏𝑝) and the corresponding shear 

displacement (𝑠ℎ,𝑝), respectively. The normalized 

variables are defined as follows: 
 

𝜏𝑛𝑜𝑟𝑚 =  
𝜏

𝜏𝑝
              ∀𝜏 ≤ 𝜏𝑝 (5) 

 
Where 𝜏𝑛𝑜𝑟𝑚 is the normalized shear stress, 𝜏 is 

the shear stress, and 𝜏𝑝 is the peak shear stress. 

 

𝑠ℎ,𝑛𝑜𝑟𝑚 =  
𝑠ℎ

𝑠ℎ,𝑝
         ∀𝑠ℎ ≤ 𝑠ℎ,𝑝 (6) 
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Where 𝑠ℎ,𝑛𝑜𝑟𝑚 is the normalized horizontal shear 

displacement, 𝑠ℎ is the horizontal shear displacement, 
and 𝑠ℎ,𝑝 is the horizontal displacement at peak shear 

strength. 
Substituting these into the hyperbolic model yields 

the following expression for normalized shear stress as 
a function of normalized shear displacement: 

 

𝜏𝑛𝑜𝑟𝑚 =  
𝑠ℎ,𝑛𝑜𝑟𝑚

𝑎 + 𝑏 ⋅ 𝑠ℎ,𝑛𝑜𝑟𝑚
 (7) 

 
Where 𝜏𝑛𝑜𝑟𝑚 is the normalized shear stress, 

𝑠ℎ,𝑛𝑜𝑟𝑚 is the normalized shear displacement, and 𝑎 and 

𝑏 are dimensionless parameters obtained through 
regression based on the normalized data up to the peak.  

This transformation reduces sensitivity to scale 
and allows for a more stable and reliable parameter 
estimation across tests with different stress levels or 
displacements. 

Figure 1 presents the normalized shear stress–
displacement curve fitted using the hyperbolic model 
(solid blue line). The inset graph shows the 
corresponding unnormalized curve, where the blue 
segment represents the data used for fitting (up to the 
peak shear strength), and the green segment shows the 
post-peak behavior. This representation highlights the 
normalization process and the portion of the data 
relevant for model calibration. 

 

 
Figure 1. Normalized shear stress (𝜏𝑛𝑜𝑟𝑚) as a function of 
normalized shear displacement (sℎ,𝑛𝑜𝑟𝑚) obtained from 

the direct shear test on sand sample No. 25297. 
 

The use of normalized variables significantly 
improves the stability and reliability of the regression by 

reducing sensitivity to outliers and inconsistencies, 
particularly at low displacements. In addition, 
normalization ensures consistent axis scaling, which is 
especially important when applying nonlinear 
regression techniques such as the hyperbolic model. 

 

4. Data and Materials 
To evaluate the applicability of the normalized 

hyperbolic model to direct shear tests, an extensive 
dataset was compiled from experiments conducted 
between 2010 and 2023 at the Geotechnical Laboratory 
of the University of Applied Sciences in Dresden. The 
dataset includes 484 direct shear tests performed on 175 
different soil types, representing a wide spectrum of 
grain sizes and mechanical behaviors. 

The soils were classified into six main groups 
according to the Unified Soil Classification System 
(USCS): GW (well-graded gravel), GP (poorly graded 
gravel), GC/GM (clayey and silty gravel), SP (poorly 
graded sand), SC/SM (clayey and silty sand), and CL 
(low-plasticity clay). Figure 2 shows the distribution of 
the 175 tested soils based on their fines and sand 
content, grouped by USCS classification. The number of 
tested soils per group is indicated in parentheses, 
highlighting the diversity of the materials analyzed 
within each classification. 

 

 
Figure 2. Distribution of the 175 tested soils based on their 
fines and sand content. The soils are grouped according to 
the USCS system, with the number of soils tested per group 

indicated in parentheses. 
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Each test specimen was compacted to a relative 
density ranging from 88% to 100%. The initial water 
content varied between 1% and 54%, depending on the 
material type and compaction method. 

Four different direct shear devices were used 
across the test program, each calibrated to ensure 
comparability of results.  

The tests were conducted under drained 
conditions, and the applied normal stresses varied 
depending on the expected strength of each soil type. For 
model fitting, only the shear stress and horizontal 
displacement data were considered. Each curve was 
normalized as described in Section 3, and only the 
portion up to the peak shear strength was used, as shown 
in Figure 1.  

 
4. 1. Validation and Model Fitting 

The available data enabled the determination of 
the peak shear strength 𝜏𝑝 and the shear displacement at 

failure 𝑠ℎ,𝑝. These values were used to normalize the 

shear stress–displacement curves according to Eqs. 5 
and 6. The normalized data were then fitted using Eq. 7, 
with the parameters a and b determined through 
nonlinear regression. Given the known values of the 
constant b and the peak shear stress 𝜏𝑝, the failure ratio 

𝑅𝑓 was calculated using Eqs. 2 and 3. The parameter 𝑅𝑓  

plays a central role in assessing the validity of the model, 
as its values should fall within the typical range reported 
in the literature. According to [9], typical 𝑅𝑓 values for 

triaxial tests range from 0.5 to 1.0. 
Figure 3 shows the distribution of 𝑅𝑓 values 

obtained from all 484 tests. The data approximate a 
normal distribution with a mean of 0.791 and a standard 
deviation of 0.139.  

The majority of the values fall within the expected 
range of 0.5 to 1.0, with only 4% of tests (20 shear tests) 
yielding 𝑅𝑓 values between 0.3 and 0.5. These lower 

values were observed primarily in the GW and GP soil 
groups. Low 𝑅𝑓 values are typically associated with 

dense or overconsolidated soils, whereas higher values 
tend to occur in loosely packed or normally consolidated 
soils.  

Selected examples of fitted curves are presented in 
Figure 4. The orange and blue curves illustrate cases 
with lower coefficients of determination due to local 
fluctuations in the measurements, whereas the red and 
green curves show well-fitted data with high agreement 
between model and measurements. 

 

 
Figure 3. Representation of the Rf values obtained from 

484 direct shear tests. The grey histogram starts at 0.30, 
with a bin width of 0.018. Kernel density estimates (KDE) 
are shown for different bandwidths: red (0.2), green (0.3) 

and orange (bandwidth according to Scott, 0.375). 

 

 
Figure 4. Selected normalized shear curves (solid lines) 

and corresponding fitted curves (dashed lines) according 
to Eq. 7, based on data from direct shear tests.  

 
Figure 5 displays the distribution of all 𝑅2 values 

obtained from the fitted models. The data follow a 
Weibull distribution with scale and shape parameters of 
0.993 and 195.71, respectively. These results confirm 
that the normalized hyperbolic model provides a 
consistent and accurate fit across a wide range of soil 
types and test conditions. 
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Figure 5. Distribution of the coefficients of determination 

(R2 values) from the application of Eq. 7 to 484 shear 
curves. The grey histogram starts at 0.959 with a bin width 

of 0.001. The density function is fitted with a Weibull 
distribution (scale = 0.993, threshold = 0, shape = 195.71). 

 
4. 2. Interpretation of Parameters a and b 

The normalized hyperbolic model developed in 
this study is governed by two parameters, a and b, which 
together define the shape of the shear stress–
displacement curve. The parameter a influences the 
initial slope, while b controls how quickly the curve 
approaches its asymptotic limit.  

Figure 6 illustrates the influence of parameters 𝑎 
and  𝑏 on the curve shape. Two pairs of curves are shown: 
one set (solid lines) with different values of 𝑏 and 
constant 𝑎, and another set (dashed lines) with varying 
𝑎 and constant 𝑏. A higher value of 𝑏 causes the curve to 
approach the peak shear stress more gradually, resulting 
in a flatter shape. In contrast, a lower 𝑏 leads to faster 
mobilization and a steeper curve. The initial slope, 
however, is governed primarily by 𝑎, as will be discussed 
in Section 4.3. As shown by the dashed lines in Figure 6, 
a lower value of 𝑎 results in a steeper initial slope, 
indicating higher initial stiffness. Conversely, a higher 
value of 𝑎 leads to a more gradual increase in shear stress 
at the beginning of the curve. These differences illustrate 
the flexibility of the hyperbolic formulation in capturing 
various mobilization behaviors observed in direct shear 
tests. The observed dependency of curve shape on these 
parameters will be further explored using a normalized 
stiffness parameter in the following section. 

 
Figure 6. Effect of parameter a and b on the shape of the 

normalized shear stress–displacement curve. Two pairs of 
curves are shown: one varying 𝑏 while keeping 𝑎 constant 
(solid lines), and one varying 𝑎 while keeping 𝑏 constant 

(dashed lines). 

 
4. 3. Influence of Normalized Secant elastic modulus 

To explore how the parameters a and b relate to 
the mechanical behavior of the material, a normalized 
secant elastic modulus 𝐸50,𝑛𝑜𝑟𝑚 is introduced. This 

modulus is defined as the slope between the origin and 
50 % of the normalized peak shear strength, and is 
calculated using the Eq. 8: 
 

𝐸50,𝑛𝑜𝑟𝑚 =  
𝜏𝑝,𝑛𝑜𝑟𝑚

2 ⋅ 𝑠ℎ,𝑛𝑜𝑟𝑚
=

0.5

𝑠ℎ,𝑛𝑜𝑟𝑚
 (8) 

 
Where 𝐸50,𝑛𝑜𝑟𝑚 is the normalized secant elastic 

modulus, 𝜏𝑝,𝑛𝑜𝑟𝑚 is the normalized peak shear stress, 

and 𝑠ℎ,𝑛𝑜𝑟𝑚 is the normalized shear displacement. 
Figures 7 and 8 present the empirical relationships 

between 𝐸50,𝑛𝑜𝑟𝑚 and the parameters a and b, 

respectively. Both curves were fitted using the following 
generalized expression: 

 

𝑎(𝐸50,𝑛𝑜𝑟𝑚) =  
𝑘1

(𝑘2 ⋅ 𝐸50,𝑛𝑜𝑟𝑚)
𝑘3

+ 𝑘4 (9) 

 
Where 𝐸50,𝑛𝑜𝑟𝑚 is the normalized secant elastic 

modulus and 𝑘1, 𝑘2, 𝑘3, and 𝑘4are regression constants. 
 

The same form was used to fit the function 
𝑏(𝐸50,𝑛𝑜𝑟𝑚) with a different set of coefficients. Table 1 

summarizes the fitted constants 𝑘1 to 𝑘4 for both 
functions.  
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Figure 7. Relationship between parameter a and the 

normalized secant elastic modulus 𝐸50,𝑛𝑜𝑟𝑚, based on 484 

direct shear tests. 

 

 
Figure 8. Relationship between parameter b and the 

normalized secant elastic modulus 𝐸50,𝑛𝑜𝑟𝑚, based on 484 

direct shear tests. 
 

These relationships capture the non-linear 
dependence between the normalized secant modulus 
and the curve shape parameters a and b, and 
demonstrate consistent behavior across a wide range of 

are valid across a wide range of normalized secant 
modulus values.  

 
Table 1. Fitted coefficients for the prediction of parameters a 

and b as functions of 𝐸50,𝑛𝑜𝑟𝑚, evaluated in two stiffness 

regions defined by a threshold in 𝐸50,𝑛𝑜𝑟𝑚 . 

Param. Reg. 𝑘1 𝑘2 𝑘3 𝑘4 
  [-] [-] [-] [-] 
a ≤ 5  294.77 25.62 1.777 0.064 
a > 5  3.64 5.041 1.082 0.001 
b ≤ 5  -1.388 1.197 1.642 0.957 
b > 5  -2.774 2.444 1.185 1.023 

Coefficients 𝑘1 to 𝑘4 correspond to the fitting constants used in Eq. 9. 

 
Additionally, the failure ratio 𝑅𝑓 was fitted as a function 

of the normalized secant elastic modulus 𝐸50,𝑛𝑜𝑟𝑚 using 

a logarithmic expression: 
 

𝑅𝑓 = α ⋅ ln(𝐸50,𝑛𝑜𝑟𝑚) + 𝛽  (10) 

 
Where 𝑅𝑓 is the failure ratio, 

α and 𝛽 are regression coefficients, and 
𝐸50,𝑛𝑜𝑟𝑚 is the normalized secant elastic modulus at 50% 

of the peak shear stress. 
This relationship captures the progressive 

increase in mobilized strength with increasing stiffness. 
As illustrated in Figure 9, the data exhibit a clear trend. 
However, a single function was not sufficient to 
represent the entire dataset accurately.  

 

 
Figure 9. Piecewise logarithmic fit of the failure ratio 𝑅𝑓 as 

a function of the normalized secant elastic modulus 
𝐸50,𝑛𝑜𝑟𝑚. 
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Therefore, a piecewise fitting approach was 
applied using a threshold at 𝐸50,𝑛𝑜𝑟𝑚 = 5, resulting in 

two separate regressions. The coefficients of 
determination for the low and high stiffness ranges were 
𝑅2 = 0.902 and 𝑅2 = 0.77 respectively.  

These results confirm that stiffness plays a key 
role in controlling not only the curve shape but also the 
mobilized strength. This finding further supports the 
development of simplified formulations, such as a direct 
link between parameters 𝑎 and 𝑏, explored in the next 
section. These empirical correlations not only provide a 
mathematical link between curve parameters and 
stiffness but also reflect fundamental aspects of soil 
behavior. Specifically, the parameter a is associated with 
the initial stiffness of the material, while b governs the 
mobilization rate of shear strength. The normalized 
secant modulus serves as a practical indicator that 
integrates both effects, allowing practitioners to 
anticipate the shape of the shear curve based on early-
stage stiffness. This has direct implications for test 
interpretation, particularly when shear curves are 
incomplete or truncated in multistage procedures. 

To further simplify the prediction of peak values, a 
linear relationship between the parameters a and b was 
observed and fitted as: 
 

𝑎 = k1 ⋅ 𝑏 + 𝑘2 (11) 
 

Where 𝑎 and 𝑏 are the model parameters from the 
normalized hyperbolic function, and 
k1 and 𝑘2 are regression constants derived from the 
empirical relationship between the two parameters. 

This empirical fit yielded a coefficient of 
determination of 0.993, indicating a strong correlation. 
Additionally, based on the normalized condition where 
𝜏𝑝,𝑛𝑜𝑟𝑚 = 1 and 𝑠ℎ,𝑛𝑜𝑟𝑚 = 1, the hyperbolic function 

simplifies to: 
 

1 =
1

𝑎 + 𝑏
 →  𝑎 =  −𝑏 + 1 (12) 

 
Where 𝑎 and 𝑏 are the model parameters 

describing the shape of the normalized hyperbolic 
function. This identity reflects the constraint at the peak 
state, where both the normalized shear stress and 
displacement are equal to 1. 

Figure 10 shows the correlation between a and b, 
which aligns closely with both the linear regression and 
the theoretical expression from Eq. 12.  

 
Figure 10. Correlation between constants a and b from the 
484 direct shear tests. Comparison between linear fit (Eq. 

11) and theoretical relation (Eq. 12). 

 
Finally, the potential correlation between b and 

the normalized initial elastic modulus 𝐸𝑖,𝑛𝑜𝑟𝑚 was 

evaluated, but no significant trend was identified, as 
shown in Figure 11. This is likely due to the high 
sensitivity of 𝐸𝑖,𝑛𝑜𝑟𝑚 to initial measurement noise and 

device resolution. 
 

4. 4. Soil-Specific Observations 
To assess whether the fitted parameters a, b, and 

the derived failure ratio 𝑅𝑓 display consistent trends 

across different soil types, the results were grouped 
according to the Unified Soil Classification System 
(USCS). While the proposed mobilization model is 
intended to be independent of soil classification, 
identifying soil-specific tendencies can provide valuable 
insights for practical application.  

The fitted values of  𝑅𝑓 , 𝑎, and 𝑏 were analyzed by 

soil group to identify potential classification-dependent 
trends. Figures 12 to 15 present boxplots for each of 
these parameters grouped by USCS classification. In all 
boxplots, the grey boxes represent the interquartile 
range (25th to 75th percentile), the red line indicates the 
median, whiskers extend to 1.5 times the interquartile 
range, and outliers are plotted as individual points. 
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Figure 11. Attempted correlation between a and 

normalized initial modulus 𝐸𝑖,𝑛𝑜𝑟𝑚 in the 484 direct shear 

tests. No consistent trend was found. 

 
Figure 12 presents boxplots of the failure ratio 𝑅𝑓 

by soil group. Granular soils such as GP and GW exhibit 
lower 𝑅𝑓 values, with mean values between 0.6 and 0.7.  

 

 
Figure 12. Failure ratio 𝑅𝑓 grouped by USCS soil 

classification. Each box represents the interquartile range 
(25th to 75th percentile), with the red line indicating the 

median. The whiskers extend to 1.5 times the interquartile 
range, and outliers are shown as individual points. 

 
In these soils, the fitted parameters reveal 

relatively low 𝑏 and high a values compared to the other 
soil groups. This combination indicates higher initial 

stiffness and faster mobilization of shear strength, as 
illustrated in Figures 13 and 14. 

 

 
Figure 13. Distribution of parameter 𝑎 grouped by USCS 
soil classification. Each box represents the interquartile 

range (25th to 75th percentile), with the red line indicating 
the median. The whiskers extend to 1.5 times the 

interquartile range, and outliers are shown as individual 
points. 

 

 
Figure 14. Constant b grouped by USCS soil classification. 
Each box represents the interquartile range (25th to 75th 
percentile), with the red line indicating the median. The 

whiskers extend to 1.5 times the interquartile range, and 
outliers are shown as individual points. 

 
In contrast, fine-grained soils such as CL and 

SC/SM tend to display higher 𝑅𝑓 values, often near 0.9, 

along with relatively lower a and higher b. This results in 
more curved-stress-displacement responses and a more 
gradual mobilization of shear stress at lower stiffness 
levels. These trends support the interpretation that soils 
with a significant fines content tend to develop strength 
more progressively, reflecting the tendency of normally 
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consolidated fine-grained soils to deform gradually and 
mobilize strength over a longer displacement range. 

 
5. Methodology for predicting peak shear 
strength 

The primary objective of this study is to develop a 
reliable method for predicting peak shear strength using 
an algorithm based on the hyperbolic function 
introduced earlier, with the parameters a and b derived 
in section 4.3.  

 
5. 1. Overview of the Prediction Algorithm 

This algorithm processes shear stress and shear 
displacement data up to a specific level of mobilization, 
normalizes the data, fits them to the hyperbolic function 
and then extrapolates the data to estimate the peak 
values.  

However, in multistage testing, the first and 
second shearing phases are terminated before reaching 
the peak, leaving the maximum shear stress (τ𝑝) and the 

corresponding shear displacement at peak (𝑠ℎ,𝑝) 

unknown.  
Since normalization requires these peak values, a 

search algorithm is needed to estimate τ𝑝 and 𝑠ℎ,𝑝, based 

on the available curve segment.  
 

5. 2. Derivation of Key Parameters 
The critical parameters required for the algorithm are: 

 a_F, b_F:  Constants determined through 

regression based on known data, using Eq. 7. 

 a_E: Constant derived from 𝐸50,𝑛𝑜𝑟𝑚 

(determined from known data) using the 

empirical Eq. 9, with 𝑘1 = 294,77, 𝑘2 = 25,62, 

𝑘3 = 1,777,  and 𝑘4 = 0,064 for 𝐸50,𝑛𝑜𝑟𝑚 ≤ 5 

and with 𝑘1 = 3,64, 𝑘2 = 5,041, 𝑘3 = 1,082 and 

𝑘4 = 0,001 for 𝐸50,𝑛𝑜𝑟𝑚 > 5 

 b_E: Constant determined from the relationship 

between the constants a and b, using the 

empirical Eq. 11, with  𝑘1 = −1,163 and 𝑘2 =

1,016. 

5. 3. Optimization Procedure and Error Minimization 
This algorithm estimates the unknown values of τ𝑝 

and 𝑠ℎ,𝑝 from the available portion of the normalized 

shear stress-displacement curve by identifying the best-
fit parameters 𝑎_𝐹 and 𝑏_𝐹. These fitted values are then 
compared with the expected parameters 𝑎_𝐸 and 𝑏_𝐸, 

which are derived from the normalized secant elastic 
modulus 𝐸50,𝑛𝑜𝑟𝑚 using Eqs. 9 and 11.  

To evaluate the accuracy of each prediction, the 
algorithm computes the mean squared error (MSE) 
between the fitted and estimated parameters, as defined 
in Eq. 13:  

 

𝑀𝑆𝐸𝑚𝑒𝑎𝑛 =
(𝑎_𝐹 − 𝑎_𝐸)2 + (𝑏𝐹 − 𝑏_𝐸)2

2
 (13) 

 
Where 𝑀𝑆𝐸𝑚𝑒𝑎𝑛 is the mean squared error, 𝑎_F  

and 𝑏_F  are the constants determined through 
regression using Eq. 7, and 𝑎_E  and 𝑏_E  are derived from 
the empirical Eqs. 9 and 11. 

A stochastic optimization method based on 
differential evolution is applied to explore various 
combinations of τ𝑝 and 𝑠ℎ,𝑝, aiming to minimize the MSE. 

This search process iteratively adjusts the assumed peak 
values until the best agreement is found between the 
empirical model and the measured data segment.  

The boundaries for τ𝑝 and 𝑠ℎ,𝑝 are predefined 

based on practical considerations and prior knowledge 
from fully mobilized curves, particularly those obtained 
in the third shearing phase in multistage tests. This 
constraint ensures that the optimization remains 
physically meaningful and computationally efficient. 

 
5. 4. Validation and Model Fitting 

To evaluate the accuracy of the proposed model in 
predicting the peak shear strength 𝜏𝑝 a relative error 

analysis was performed on the full dataset of 484 direct 
shear tests. The relative error (RE) was calculated 
according to Eq. 14, comparing the predicted and 
measured values of 𝜏𝑝. 

 

𝑅𝐸[%] =
(𝜏𝑝,𝑝𝑟𝑒𝑑 − 𝜏𝑝) ⋅ 100

𝜏𝑝
 (14) 

  
Where 𝑅𝐸 is the relative error in percentage, 

𝜏𝑝,𝑝𝑟𝑒𝑑 is the predicted peak shear stress, and 𝜏𝑝 is the 

measured peak shear stress. 
Figure 15 illustrates the distribution of relative 

errors for different termination thresholds of the shear 
curve. Each density function represents a normal 
distribution fitted to the prediction error at a specific 
percentage of the peak displacement 𝑠ℎ,𝑝. The curves 

demonstrate that the prediction error tends to decrease 
as the available portion of the mobilization curve 
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increases, and that reliable predictions can be achieved 
even when the test is stopped early. 

 

 
Figure 15. Representation of the relative error in shear 
stress calculated according to Eq. 14 for the 484 direct 

shear tests. Density functions: Normal distribution. 

 
Figure 16 summarizes the percentage of tests for 

which the prediction error exceeds specific relative error 
(RE) thresholds (i.e., 5 %, 8 %, 10 %, and 15 %), plotted 
against the termination point expressed as a percentage 
of the shear displacement at peak.  

 

 
Figure 16: Percentage of the 484 tests that exhibit a relative 
error (RE) exceeding  |𝑝|%, based on the percentage of the 
shear displacement at peak (𝑠ℎ,𝑝). 

 
The proportion of tests with large prediction 

errors consistently decreases as the level of mobilization 
increases, reinforcing the applicability of the method to 
truncated shear tests. Notably, even when only 60 % of 

the peak displacement is mobilized, the majority of 
predictions fall within an error range below 10 %. 

These results confirm the robustness of the 
normalized hyperbolic model in estimating 𝜏𝑝 from 

incomplete data, and support its use in multistage test 
configurations where full mobilization is intentionally 
avoided. 

 

6. Practical Application of the Model 
In multistage direct shear testing, it is common for 

the initial stages to be interrupted before the peak shear 
strength is fully mobilized. This occurs intentionally to 
preserve specimen integrity for subsequent loading 
stages. As a result, the shear stress–displacement curves 
in the early phases lack a clear peak, making it difficult to 
determine shear strength parameters directly. 

The proposed model provides a practical solution 
by fitting the available portion of the curve and 
extrapolating the expected peak shear strength. This 
approach is particularly useful in multistage procedures 
where each shearing phase is intentionally halted before 
full mobilization, followed by a complete reset of the 
horizontal displacement. This includes procedures such 
as MSB, previously described in detail by Toledo Arcic 
(2025), where early termination is applied to preserve 
specimen structure while ensuring continuity between 
stages. 

 
6. 1. Experimental Setup and Test Conditions 

All tests were performed using a large-scale shear 
box with internal dimensions of 30 × 30 cm and a height 
of 20 cm. The soil specimens were compacted in three 
layers to achieve uniform density and homogeneity, 
following the standard Proctor density 𝜌𝑝𝑟 and optimum 

water content 𝑤𝑝𝑟.  

The analysis shown in Figures 17-19 corresponds 
to MIX 3, classified  as ST* (strongly clayey sand) 
according to DIN 18196 [17]. This mixture has a fines 
content of 24.1%, 52.2 % sand, and 23.7% gravel, with a 
specific gravity 𝐺𝑠 = 2.647, a Proctor maximum dry 
density 𝜌𝑝𝑟 = 2.180 g/cm³, and an optimum water 

content 𝑤𝑝𝑟 = 7.96%.  

All specimens were prepared and tested by the 
same operator to minimize human error and ensure 
consistency. The normal stresses applied were 100, 200, 
and 400 kPa, consistent across both singlestage and 
multistage configurations to ensure comparability of the 
resulting shear curves. 
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6. 2. Results and Model Comparison 
Figure 17 illustrates this application using two 

multistage tests (shown in red and pink), in which the 
first and second stages were terminated before peak 
strength was reached. For comparison, singlestage test 
curves conducted under the same normal stress 
conditions are shown in blue. 

 

 
Figure 17: Shear stress–displacement curves from 
singlestage (blue) and multistage (red/pink) shear tests on 
MIX 3. The first and second stages of the multistage tests 
were stopped prior to full mobilization, while singlestage 
curves serve as a reference for the complete failure 
response. 

 
Figure 18 presents the corresponding failure 

envelopes derived without correcting for peak shear 
strength. As seen, the omission of the correction leads to 
an overestimation of the friction angle and an 
underestimation of cohesion. 

 

 
Figure 18: Failure envelopes of the tests shown in Figure 17, 
constructed without peak correction for the multistage 
tests.  

 
To address this, the extrapolation model 

developed in this study was applied to estimate the 

expected peak shear strength in the incomplete first and 
second shearing phases. The corrected failure envelopes, 
shown in Figure 19, demonstrate that the results from 
the multistage tests closely align with those obtained 
from singlestage tests. This confirms the model’s 
capability to harmonize strength estimation across 
different testing procedures. 

 

 
Figure 19: Corrected failure envelopes using the proposed 
extrapolation model, resulting in consistent shear strength 
parameters across all test configurations. 

 
6. 3. Implications for Practice 

This practical application significantly enhances 
the efficiency and reliability of multistage shear testing, 
especially for mixed or fine soils where full mobilization 
in each phase may not be feasible. The model enables 
more robust data interpretation under realistic 
laboratory constraints. 

 
7. Conclusion 

This study introduces a new model for predicting 
the shear stress and shear displacement at the peak state 
in direct shear tests. The model uses the initial data from 
the stress-displacement curve and incorporates 
empirical methods to predict them. It normalized the 
shear stress-displacement curve up to the peak and 
fitted the data to a Kondner function. Developed initially 
for drained triaxial tests, this approach forms the 
foundation for several material models, including the 
Hardening Soil or Duncan-Chang models.  

The two constants, a and b, are fundamental to the 
model, with a strongly correlating with the normalized 
secant modulus at 50% of the peak shear stress, while b 
demonstrates a linear relationship with a. By applying 
these two constants and a newly developed stochastic 
algorithm based on differential evolution, the model 
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accurately predicts the peak shear strength and the 
shear displacement at peak. 

The model was validated using 484 direct shear 
tests on different materials to determine the constants a 
and b, and the results were evaluated against known 
peak states. After analyzing data from different soil 
types, the parameters proved applicable across different 
soil groups. The goal is to establish the optimal stopping 
point during the shear test as a basis for multistage tests. 
To achieve this, mobilization curves with displacements 
between 50% and 90% of the peak shear displacement 
were compared with the predictions from the new 
model. The evaluation relied on the stochastic analysis of 
normal distributions and their deviations, ensuring 
prediction accuracy within defined limits. 

Overall, the model provides a practical and reliable 
tool for improving the interpretation of direct shear test 
data. It enhances the efficiency of multistage procedures 
by allowing early termination without compromising the 
accuracy of shear strength parameters. 

Future research will focus on developing methods 
to determine the shear strength of soils using multistage 
tests, aiming to achieve results equivalent to those from 
singlestage tests. Defining the optimal stopping criterion 
during the shearing phase is crucial for this goal. The 
results presented here are based on tests conducted with 
compacted samples. Additional adjustments will be 
needed to account for other influencing factors, such as 
aging or structure. 
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