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Abstract - In the present investigation, a numerical model based 
on the network simulation method has been designed and 
applied in order to obtain correlation between temperature 
patterns and profiles in large 2-D groundwater real scenarios, 
with horizontal or vertical regional flow and thermal conditions 
that reproduce approximately real cases, such as the daily or 
seasonal variation of the soil surface temperature. The 
illustrated applications show the power and capacity of the 
numerical tool, which is based on the analogy between electrical 
and physical variables of the problem to design an equivalent 
electrical circuit, from whose resolution the values of the real 
variables temperature and transferred heat flow are inferred. 
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1. Introduction
The coupled problems of fluid flow and heat 

transport in porous media, particularly those related to 
underground hydrology, have aroused great interest in 
recent times for their application in the field of 
geothermal, as can be seen in Di Sipio et al. [1] and in 
Barla et al. [2]. Their study has even led to the 
establishment by the scientific community of standard or 
benchmark problems that allow verifying numerical 
codes in this field since, in general, they have no 
analytical solution. Among these problems are those of 
Bénard, Yusa and Elder, discussed in Cánovas [3], which 

have given rise to numerous scientific publications. In all 
of them, temperature patterns or profiles are coupled to 
the velocity field, mainly because the flow equation 
contains a density-driven term. 

However, when the temperature range of the 
problem is narrow and the velocity field is essentially 
imposed by an external pressure gradient or piezometric 
levels (with negligible influence of flotation) that would 
cause a regional flow, the problem, although simpler in 
its mathematical model, can be potentially very useful. 
The straight profile of temperatures that would occur in 
the absence of regional flow under stationary conditions, 
away from the water flow inlet boundary (resulting in a 
constant heat flow to the bottom), would be distorted 
and curved by the effect of the horizontal and vertical 
drags when there is regional flow. Thus, at all times, the 
temperature profile with depth is determined by the 
thermal properties of the ground and the value of the 
regional flow, apart from the influence of the thermal 
boundary conditions of the scenario. If, as it actually 
happens, the outside temperature is a seasonal function 
of time, its profile in the vicinity of the ground surface 
changes continuously, but its experimental 
measurement could allow the calculation of regional 
water flow. This is the objective of the present 
communication, to determine the connection between 
the underground water flow and the form of the 
temperature profiles that can be measured in a well. This 
would allow us to consider in the future the 
determination of the regional velocity field from the 
reading (direct and hardly expensive) of temperature 
profiles in wells. 
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The first approaches to this problem consist in 
investigating the shape of the temperature profiles in a 
2-D scenario of sufficient extension, with constant 
regional flow in the horizontal direction and thermal 
conditions that reproduce approximately real cases, 
such as daily variation of the soil surface temperature 
and constant temperature at the bottom of the domain. 
In addition, different scenarios with vertical water flow 
are also studied. 

For this study, a numerical model has been 
designed based on the network simulation method, 
whose reliability has been verified in García-Ros et al. [4] 
and in Cánovas et al [5]. The elaboration of the model is 
briefly introduced and it is applied to real scenarios to 
determine the characteristics of the correlation between 
the profiles obtained and the regional flows that 
determine them. 

 
2. Nomenclature 
𝐶  Capacitor  
𝑐𝑒   Specific heat of the porous medium (Jm-3k-1) 
𝐷   Thermal diffusivity (m2/s) 
𝐻   Height or thickness of the porous medium 
domain (m) 
Jc  Current intensity flowing through a 
capacitor  
JR  Current intensity flowing through a 
resistance 
𝑘   Thermal conductivity of the porous medium  
(Jm-1s-1K-1) 
𝐿  Horizontal length of the porous medium 
Nx, Ny  Meshing reticulation 
R  Resistance (Ω) 
Rx,1, Rx,2 Elemental cell horizontal right and left 
resistance (Ω) 
Ry,1, Ry,2 Elemental cell horizontal upper and lower 
resistance (Ω) 
𝑡   Time (s) 
𝑇   Temperature (°C o K) 
𝑇𝑖,𝑗  Temperature at the center of an elemental 

cell (° C or K) 
𝑇
𝑖+

𝑥

2
,𝑗

 Temperature in the center right of an 

elemental cell (° C or K) 
𝑇
𝑖−

𝑥

2
,𝑗

  Temperature in the center left of an 

elemental cell (° C or K) 
𝑇
𝑖,𝑗+

𝑦

2

  Temperature in the upper center of an 

elemental cell (° C or K) 

𝑇
𝑖,𝑗−

𝑦

2

  Temperature in the lower center of an 

elemental cell (° C or K) 
𝑇𝑜   Temperature at x=0, x=L and y=0 (°C o K) 
𝑇(𝑡)   Temperature at y=H (°C o K) 
𝑇(𝑠)   Temperature at t=0 (°C o K) 
𝑣𝑜𝑥 , 𝑣𝑜𝑦  Water velocity in the in the X and Y spatial 

directions (m/s) 
𝑉𝑐  voltage of a capacitor 
𝑉𝑅  Voltage of a resistor 
𝑥, 𝑦   Horizontal and vertical spatial coordinates 
(m) 
∆𝑇   Temperature at the upper edge of the 
domain  
∆𝑥, ∆𝑦  Elemental cells components 
 (°C o K) 
𝛼  Storage term in the heat flow equation in a 
porous medium (equation 7) 
𝛽, 𝛾  Diffusive term in the heat flow equation in a 
porous medium (equation 7) 
𝜀  Advection term in the heat flow equation in 
a porous medium (equation 7 
𝜃, 𝐽𝑡  Storage term in the heat flow different 
spatial finites equation in a porous medium (equation 8) 
𝜇, 𝜋  Diffusive “x axis” terms in the heat flow 
different spatial finites equation in a porous medium 
(equation 8). Also called 𝐽𝑥,1, 𝐽𝑥,2 

𝜔, 𝜐  Diffusive “y axis” terms in the heat flow 
different spatial finites equation in a porous medium 
(equation 8). Also called 𝐽𝑦,1, 𝐽𝑦,2 

𝜒, 𝐽𝑣  Advection term in the heat flow different 

spatial finites equation in a porous medium (equation 8) 
𝜌   Density of the porous medium (kgm-3) 
 

3. The Physical and Mathematical Models 
Figure 1 is a physical scheme of the scenario (with 

horizontal flow). As for the mechanical problem, a 
regional water flow induces a constant velocity field (vox) 
throughout the domain. As for the thermal problem 
(which assumes the phenomena of diffusion and 
convection in the porous medium), the following 
boundary conditions are imposed: i) constant 
temperature of the inlet fluid (first class or Dirichlet 
condition at the left vertical boundary, x=0), ii) 
seasonally time-dependent temperature at the upper 
horizontal boundary (special first class condition at 
y=H), iii) zero heat flow at the bottom (second class or  
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Neumann homogeneous condition at y=0), and iv) 
constant temperature condition at the flow outlet front, 
x=L.  

In order to eliminate the influence of the thermal 
flow output condition on the temperature profile, a 
sufficiently long horizontal domain has been adopted, 
reading these profiles in the previous region to the 
influence of this condition. The same precaution is taken 
regarding the influence of the fluid inlet temperature on 
the profile. These regions, before and after the profile 
measurement, depend on both the regional velocity and 
the thermal fluid properties. 
 

Figure 1. Physical scheme of the problem. 

 
 The mathematical 2-D model is formed by the 
following set of equations: 
  

(𝑐𝑒)
𝜕𝑇

𝜕𝑡
− 𝑘2(𝑇) + (𝑐𝑒𝑣𝑜𝑥

𝜕𝑇

𝜕𝑥
) = 0 (1a) 

 

(𝑐𝑒)
𝜕𝑇

𝜕𝑡
− 𝑘2(𝑇) + (𝑐𝑒𝑣𝑜𝑦

𝜕𝑇

𝜕𝑦
) = 0 (1b) 

 
Where k is the thermal conductivity of the soil  

(Jm-1s-1K-1),  the density (kg/m3) and ce the specific heat 
(Jm-3K-1). 
 
𝑇(𝑥=0,𝑦,𝑡) = 𝑇(𝑥=𝐿 ,𝑦,𝑡) = 𝑇𝑜 (2) 

 

𝑇(𝑥,𝑦=0,𝑡) = 𝑇𝑜 (3) 

 

𝑇(𝑥,𝑦=𝐻,𝑡) = 𝑇(𝑡) (4) 

 

𝑇(𝑥,𝑦,𝑡=0) = 𝑇𝑠 (5) 

𝑣(𝑥, 𝑦, 𝑡) = 𝑣𝑜𝑥 (6a) 

  

𝑣(𝑥, 𝑦, 𝑡) = 𝑣𝑜𝑦  (6b) 

 
Eq. (1a) is that of heat transfer in the soil for the 

case of horizontal velocities. There is a diffusion in both 
spatial directions, a drag or convection in the OX 
direction and a local storage, quantities that are balanced 
in each volume or cell element. Temperature (T) is the 
dependent variable while spatial coordinates (x, y) and 
time (t) are the independent ones. For those scenarios 
with vertical velocity, Eq. (1b) is applied, in which case 
the drag or convection process is in the OY direction. 

Eq. (2) represents the isothermal boundary 
conditions at the vertical sides x=0 and x=L of the 
domain, as well as eq. (3) at the bottom, and eq. (4) is the 
condition at the upper surface, where the temperature 
will be a function of time, T(t), approaching the seasonal 
variations of the environment. 

Eq. (5) is the initial temperature of the soil and eq. 
(6a) or (6b) the solution of the flow velocity field at the 
domain. This is the model studied in this work although 
it is planned to extend it to more complex scenarios in 
future works. For example, velocity field dependent on 
depth, water table at levels below the soil surface, 
scenarios with sloping bottoms that imply the existence 
of vertical velocity components, convection and 
radiation incident fluxes on the soil surface, etc.  

As we will see below, from the point of view of the 
network model design, these new scenarios do not entail 
special restrictions since the network method, discussed 
in González-Fernández [6] has successfully addressed 
problems of similar complexity, as can be seen in García-
Ros et al. [4] and in Cánovas [5]. 
 
4. The Network Model 

Taking those scenarios with horizontal velocity as 
reference, the network model is designed based on the 
finite-difference differential equation that derives from 
the spatial discretization of governing eq. (1a), retaining 
time as a continuous variable. For a volume element of 
an isotropic and homogeneous soil, this equation writes 
as 

 
𝛼 −  𝛽 −  𝛾 +  𝜀 = 0 (7) 

 
 
 



Ts

y = 0

y = H

vo

x = 0 x = LTo

To To

T(t)

Porous medium

k
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 Where:  
 

𝛼 = (𝑐𝑒)
𝑑𝑇

𝑑𝑡
 (7.a) 

 

𝛽 = 𝑘 [
1

∆𝑥
(
∆𝑇

∆𝑥
|
𝑥+
−
∆𝑇

∆𝑥
|
𝑥−
)] (7.b) 

 

𝛾 = 𝑘 [
1

∆𝑦
(
∆𝑇

∆𝑦
|
𝑦+
−
∆𝑇

∆𝑦
|
𝑦−
)] (7.c) 

 

𝜀 = (𝑐𝑒𝑣𝑜𝑥
∆𝑇

∆𝑥
) (7.d) 

 
Now, we set the analogy between physical 

quantities ‘electric current  heat flux’ and ‘electric 
potential  temperature’. Using the nomenclature of 
Figure 2 for the volume element or cell, each addend of 
the former equation is assumed to be an electric current 
through a branch of the network (or electric circuit) that 
balances with the currents of the other addends in their 
respective branches in a common node. The voltage in 
this node, once the balance among currents is satisfied, 
is the temperature of the cell. 
 

 
Figure 2. Nomenclature of temperatures in the volume 

element.  

  
The constitutive equation between current and 

voltage through the electric component implemented in 
each branch must fit the mathematical expression of the 
related addend. Defining the soil thermal diffusivity as 

𝐷 =
𝑘

𝑐𝑒
 (m2s-1) and re-organizing the previous eq. (7), we 

have: 
 

𝜃 − 𝜇 − 𝜋 − 𝜔 − 𝜐 +  𝜒 = 0 (8) 
 

 Where:  
 

𝜃 =
𝑑𝑇𝑖,𝑗
𝑑𝑡⏟
𝐽𝑡

 

 

(8.a) 

 

𝜇 = 
𝑇
𝑖+

𝑥
2
,𝑗
−𝑇𝑖,𝑗

𝑥2

2𝐷

 
⏟      

𝐽𝑥,1

 

 

(8.b) 

 

𝜋 =

𝑇𝑖,𝑗 −𝑇𝑖−𝑥
2
,𝑗

𝑥2

2𝐷⏟        
𝐽𝑥,2

 

 

(8.c) 

 

𝜔 =

𝑇
𝑖,𝑗+𝑦

2

−𝑇𝑖,𝑗

𝑦2

2𝐷⏟        
𝐽𝑦,1

 

 

(8.d) 

 

𝜐 =

𝑇𝑖,𝑗−𝑇𝑖,𝑗−𝑦
2

𝑦2

2𝐷⏟        
𝐽𝑦,2

 

 

(8.e) 

 

𝜒 = 𝑣𝑜𝑥

𝑇
𝑖+𝑥

2
,𝑗
−𝑇

𝑖−𝑥
2
,𝑗

∆𝑥⏟              
𝐽𝑣

 

 

(8.f) 

 
The current Jt  is implemented by a capacitor of 

value C=1 since its constitutive equation is 𝐽𝐶 = 𝐶
𝑑𝑉𝐶

𝑑𝑡
 

while the terms  Jx,1, Jx,2, Jy,1 and Jy,2 do it with resistors of 

value 𝑅𝑥,1 = 𝑅𝑥,2 =
𝑥2

2𝐷
, 𝑅𝑦,1 = 𝑅𝑦,2 =

𝑦2

2𝐷
 since the 

constitutive equation of such passive element is given by 

𝐽𝑅 =
𝑉𝑅

𝑅
. Finally, Jv is implemented by a voltage-controlled 

current source (G), an active element of the circuit whose 
output, programmed by software, is given by the 
mathematical expression of Jv.  

The network of the cell, shown in Figure 3, extends 
to the entire domain through simple ideal contacts 
between adjacent cells. Moreover, boundary conditions 
have to be added. Thus, vertical sides, eq. (2), are 
implemented by constant voltage sources, as well as eq. 
(3) in the bottom side, where in the upper side, eq. (4), a 
time-dependent voltage source is needed.  

T
i,j

T
i,j+ ____

2

y

T
i,j- ____

2

y

T
i-    ,j____

2
x T

i+    ,j____

2
x
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Finally, initial condition given by eq. (5) is 
implemented by charging the capacitors with an initial 
voltage of value Ts. 

Figure 3. Network model of the cell (left) and voltage 
boundary condition (right). 

 
For those scenarios with vertical velocity (voy), the 

network model would be the same as shown before, with 
the only difference in the expressions (7.d) and (8.f), 
whose arguments would change to: 

 

𝜀 = (𝑐𝑒𝑣𝑜𝑦
∆𝑇

∆𝑦
) (7.e) 

 

𝜒 = 𝑣𝑜𝑦

𝑇
𝑖,𝑗+𝑦

2

−𝑇
𝑖,𝑗−𝑦

2

∆𝑦⏟              
𝐽𝑣

 

 

(8.g) 

Once the model is introduced in a circuit 
simulation computer code, the free code Ngspice [7], it is 
run, giving the time-dependent solutions of the voltage 
(temperature) at all nodes and the currents (heat flux) at 
all branches.  

Thanks to the powerful computing algorithms 
implemented in these codes, the simulation provides a 
practically exact solution of the model, relegating errors 
to the mesh size chosen. For meshes above 50x50 cells, 
computation times are low (5-30 s) and errors fall below 
1%, a generally accepted value in engineering. This can 
be seen in Alhama [8].  

 
5. Applications 
Three different scenarios have been chosen. The first 

two are scenarios with horizontal water flow, 
while the third is for vertical flow. 

 
5.1. First Scenario 

The first one has the following data: 

 L= 40 m, H = 10 m, vox = 0.2 ms-1, k = 1 Jm-1s-1K-1, 
ce = 2.7x104 Jm-3K-1, D = 2.7·10-4 m2s-1  
 To = 0 K, T(t) = 1 K, Ts = 0 K 
 Nx = 80, x = 40/80= 0.5 m, Ny = 20, y = 10/20 = 
0.5 m, Simulation time = 1000 hours. 

 
The simulation results, with a calculation time of 

around 20 s, are shown below. Thus, Figure 4 shows the 
temperature patterns for different simulation times. At 
50 hours it can be seen that after about 20 meters from 
the left border, where the water flow comes from, a 
constant temperature profile is achieved, independent 
on the OX axis position. However, this is not a stationary 
situation, as we can see that at 100 hours the profile has 
evolved in depth (in this case the profile is more or less 
constant after 30 meters on the OX axis). It is around 500 
hours when the stationary temperature profile is 
reached, since the thermal gradient is the same 
throughout the medium.  
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Figure 4. Temperature patterns of the first scenario chosen 

(H=10m, L=40m, t=50, 100, 500 hours). 

 
However, the distance on the OX axis to reach the 

stationary situation rises to 100 meters (Figure 5) for 
which it has been necessary to extend the length L of 
the problem to 120 meters. 
 
 

 
 
 
 

 
Figure 5. Temperature patterns of the first scenario chosen 

(H=10m, L=80, 120 m, t=500 hours). 

 
In view of these data it is observed how the 

temperature profiles, at times long enough for the 
stationary situation to be reached, are initially 
dependent on the position and then become 
independent in the central region. Figure 6 shows the 
different depth-temperature profiles obtained in the 
previous scenario, for different OX distances (5, 40, 80 
and 120 meters) and for different times since the start of 
the problem (50, 100 and 500 hours). 

This last profile (t = 500 hours) is the one that 
would be expected to be registered if in a field study we 
measure the evolution of the temperature with the depth 
in a borehole or well located in the considered OX 
position.  
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Figure 6. Temperature profiles of the first scenario chosen 

 
5.2. Second Scenario 

The second scenario differs from the first in the 
following data: 

L= 120 m, T(t) given in Figure 7, Nx = 120, x = 
120/120= 1 m. 
 

 
Figure 7. Periodic function of the temperature in the soil 

surface. 
 

For this second scenario, the stationary situation is 
never reached, since the temperature varies periodically 
in the upper boundary. However, what does happen is 
that after approximately 600 hours have elapsed, the 
temperature patterns and profiles begin to repeat 
continually, as long as we compare them at the same time 
in the cycle or period. Thus, in Figures 8 and 9 the depth-
temperature patterns and profiles are represented for 
the moments immediately before the beginning of the 
change of the temperature in the upper side (multiples 
of hours 12 and 24 hours, endings of T = 0 and T = 1, 
respectively). 
 

 
 

 

Figure 8. Temperature patterns of the second scenario 
chosen (H=10m, L=120 m, t=600, 660 hours). 

 

Figure 9. Temperature profiles of the second scenario chosen. 

 
5.3. Third Scenario 

The third scenario corresponds to a case with 
vertical water flow and, initially, has the following data: 

L= 40 m, H = 10 m, voy = 4·10-6 ms-1, k = 1 Jm-1s-1K-

1, ce = 2.7x104 Jm-3K-1, D = 1·10-5 m2s-1  
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 To = 0 K, T(t) = 1 K, Ts = 0 K 
 Nx = 80, x = 40/80= 0.5 m, Ny = 20, y = 10/20 = 
0.5 m, Simulation time = 3·104 hours. 
 

The simulation results, with a calculation time of 
around 15 s, are shown below. For this case, we illustrate 
the results from the output graphics of the Pspice [9] 
software, a code similar to Ngspice but with its own 
graphical interface. Thus, Figure 10 shows the evolution 
of the temperature for a column of soil (conveniently far 
from the lateral contours), in which can be observed 
how, after approximately 5000 hours, the steady state is 
reached. This can also be seen in Figure 11, where the 
evolution of the heat flow is represented for the different 
depths of the ground. 
 

Figure 10. Temperature evolution in a column of the soil for 
the third scenario chosen. 

 

 
Figure 11. Heat flow evolution in a column of the soil for the 

third scenario chosen. 
 

On this scenario, we will now present two 
interesting variants: in the first, once the steady state is 
reached, we will proceed to double the velocity, voy 8·10-

6 ms-1, a change that we will make linear and progressive. 
In the second variant, once the stationary is reached as 
well, we will proceed to double the temperature of the 
upper edge, that is, T (t) = 2 K. These conditions are very 

easy to implement in the network method, in which it is 
only necessary to change the specifications of the 
parameters voy and T(t) at the desired time. 

In the first case, it is observed how the heat flow 
doubles when velocity does, Figure 12, although this is 
not manifested in the temperature profile, which 
remains constant and looks identical to that of Figure 9. 
That is, the temperature field remains unchanged 
despite the fact that the total dragged heat has doubled. 

Figure 12. Heat flow evolution in a column of the soil for the 
third scenario (with changing vertical velocity). 

 
On the other hand, when we double the surface 

temperature the value of this variable is doubled in the 
whole domain, Figure 13, as expected. But in addition, it 
is also observed how the transmitted heat flow is 
doubled, Figure 14. However, for this last variable, it can 
also be seen how a second transient appears, a situation 
that did not happen in the previous case in which we 
doubled the velocity (Figure 12), where the increase in 
heat flow occurred linearly and gradually (remember 
that the change in velocity has been implemented in this 
way). 

Figure 13. Temperature evolution in a column of the soil for 
the third scenario (with changing surface temperature). 
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Figure 14. Heat flow evolution in a column of the soil for the 

third scenario (with changing surface temperature). 
 

6. Conclusions 
The network method has been successfully 

applied to different scenarios of heat transport within a 
porous medium through which underground water 
flows. Through this technique, different temperature 
boundary conditions have been implemented, so that 
simulated scenarios are very close to the reality 
observed in this type of problems. 

The tendencies observed in the temperature 
patterns and profiles have provided very valuable 
information, since the lengths and the times in which the 
stationary, or quasi-stationary, state is reached have 
been determined, for both horizontal and vertical flow 
velocities. 

The results obtained bring us closer to a horizon in 
which groundwater flux could be obtained from real field 
temperature readings. 
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